Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 10: Infinite Sequences and Series - Practice Exercises - Page 637: 63

Answer

$\Sigma_{n=0}^\infty \dfrac{(\pi)^n x^n}{2^{(n)}n!}$

Work Step by Step

Consider the Taylor Series for $e^x$ as follows: $e^x=\Sigma_{n=0}^\infty \dfrac{x^n}{n!}=1+x+\dfrac{x^2}{2!}+\dfrac{x^3}{3!}+\dfrac{x^4}{4!}+...$ Then $e^{(\dfrac{\pi x}{2})}=\Sigma_{n=0}^\infty \dfrac{(\dfrac{\pi x}{2})^n}{n!}=1+(\dfrac{\pi x}{2})+\dfrac{(\dfrac{\pi x}{2})^2}{2!}+\dfrac{(\dfrac{\pi x}{2})^3}{3!}+\dfrac{(\dfrac{\pi x}{2})^4}{4!}+...$ Hence, $e^{(\dfrac{\pi x}{2})}=\Sigma_{n=0}^\infty \dfrac{(\pi)^n x^n}{2^{(n)}n!}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.