Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 10: Infinite Sequences and Series - Practice Exercises - Page 637: 61

Answer

$1-\dfrac{(x^{5/3})^2}{2!}+\dfrac{(x^{5/3})^4}{4!}-...=\Sigma_{n=0}^\infty (-1)^n\dfrac{ (x)^{(10n/3)}}{(2n)!}$

Work Step by Step

Consider the Taylor Series for $\cos x$ as follows: $ \cos x=\Sigma_{n=0}^\infty \dfrac{(-1)^n x^{2n}}{(2n)!}=1-\dfrac{x^2}{2!}+\dfrac{x^4}{4!}-...$ Replace $(x^{5/3})$ with $x$ in the above series. $\cos (x^{5/3})=\Sigma_{n=0}^\infty \dfrac{(-1)^n (x^{5/3})^{2n}}{(2n)!}$ This implies that $1-\dfrac{(x^{5/3})^2}{2!}+\dfrac{(x^{5/3})^4}{4!}-...=\Sigma_{n=0}^\infty (-1)^n\dfrac{ (x)^{(10n/3)}}{(2n)!}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.