Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 10: Infinite Sequences and Series - Practice Exercises - Page 637: 67

Answer

$\dfrac{1}{4}-\dfrac{(x-3)}{4^2}+\dfrac{(x-3)^2}{4^3}-\dfrac{(x-3)^3}{4^4}...$

Work Step by Step

Given: $f(x)=\dfrac{1}{x+1}$ Taylor polynomial of order $n$ for the function $f(x)$ at the point $a$ can be defined as: $A_n(x)=f(k)+\dfrac{f'(k)}{1!}(x-a)+\dfrac{f''(a)}{2!}(x-a)^2+....+\dfrac{f^{n}(a)}{n!}(x-a)^n$ Now, $f(3)=\dfrac{1}{4}$ and $f'(x)=(x+1)^{-1} \implies f'(3)=-\dfrac{1}{(4)^2}\\f''(x)=2(x+1)^{-3} \implies f''(3)=\dfrac{2}{(4)^3}\\f'''(x)=-6(x+1)^{-4} \implies f'''(3)=-\dfrac{6}{(4)^4}$ Taylor polynomial of order $n$ for the function $f(x)$ is: $f(x)=\dfrac{1}{4}+(-\dfrac{1}{(4)^2})(x-3)+\dfrac{\dfrac{2}{(4)^3}}{2!}(x-3)^2+\dfrac{(-\dfrac{6}{(4)^4})}{3!}(x-3)^3....$ Hence, $f(x)=\dfrac{1}{4}-\dfrac{(x-3)}{4^2}+\dfrac{(x-3)^2}{4^3}-\dfrac{(x-3)^3}{4^4}...$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.