Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 10: Infinite Sequences and Series - Practice Exercises - Page 637: 74

Answer

$2$

Work Step by Step

Solve $\lim\limits_{\theta \to 0}\dfrac{e^{\theta }-e^{-\theta }-2\theta }{\theta -\sin \theta }$ Now, $\lim\limits_{\theta \to 0}\dfrac{e^{\theta }-e^{-\theta }-2\theta }{\theta -\sin \theta }=\lim\limits_{\theta \to 0}\dfrac{(1+\theta+\dfrac{\theta^2}{2!}+\dfrac{\theta^3}{3!}+...)-(1-\theta+\dfrac{(-\theta)^2}{2!}+\dfrac{(-\theta)^3}{3!}+...)-2(1+\theta+\dfrac{\theta^2}{2!}+\dfrac{\theta^3}{3!}+...)}{\theta -(\theta-\dfrac{\theta^3}{3!}+\dfrac{\theta^5}{5!}-..)}$ $\implies \lim\limits_{\theta \to 0}[\dfrac{2 \theta^3 (\dfrac{\theta^2}{6}+\dfrac{\theta^4}{120}-...)}{\theta^3(\dfrac{1}{6}-\dfrac{\theta^2}{120}+...)}]=2$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.