Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 10: Infinite Sequences and Series - Practice Exercises - Page 637: 66

Answer

$-1+(x-2)-(x-2)^2+(x-2)^3-....$

Work Step by Step

Given: $f(x)=\dfrac{1}{1-x}$ Taylor polynomial of order $n$ for the function $f(x)$ at the point $a$ can be defined as: $A_n(x)=f(k)+\dfrac{f'(k)}{1!}(x-a)+\dfrac{f''(a)}{2!}(x-a)^2+....+\dfrac{f^{n}(a)}{n!}(x-a)^n$ Now, $f(2)=-1$ and $f'(x)=(1-x)^{-2} \implies f'(2)=1\\f''(x)=2(1-x)^{-3} \implies f''(2)=-2\\f'''(x)=6(1-x)^{-4} \implies f'''(2)=6$ Thus, we have $f(x)=-1+(x-2)+\dfrac{(-2)(x-2)^2}{2!}+\dfrac{6(x-2)^3}{3!}....$ and $f(x)=-1+(x-2)-(x-2)^2+(x-2)^3-....$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.