Calculus 8th Edition

Published by Cengage
ISBN 10: 1285740629
ISBN 13: 978-1-28574-062-1

Chapter 15 - Multiple Integrals - Review - Exercises - Page 1103: 34

Answer

$\dfrac{\pi}{4} \approx 0.2244$

Work Step by Step

Apply spherical coordinates: $x =\rho \sin \phi \cos \theta$ and $y =\rho \sin \phi \sin \theta$ and $\rho^2 =x^2+y^2+z^2$ Consider $I=\int_{-1}^{ 1}\int_{-\sqrt {1-x^2}} ^{-\sqrt {1-x^2}}\int_{0} ^{\sqrt {1-x^2-y^2} } z^3(x^2+y^2+z^2)^{1/2} \ dz \ dy \ dx$ Now, $I=\int_{0}^{\pi/2}\int_{0} ^{2 \pi} \int_0^1 \rho^6 \cos^3 \phi \sin \phi d\rho d\theta d\phi =\int_{0}^{\pi/2} \cos^3 \phi \sin \phi d\phi \int_{0} ^{2 \pi} d\theta \int_0^1 \rho^6 d\phi =\dfrac{1}{4}[\cos^4 \phi ]_0^{\pi/2} [\theta]_0^{2 \pi} \dfrac{1}{7}\times \rho^6 d\rho =\dfrac{\pi}{4} \approx 0.2244$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.