Calculus 8th Edition

Published by Cengage
ISBN 10: 1285740629
ISBN 13: 978-1-28574-062-1

Chapter 15 - Multiple Integrals - Review - Exercises - Page 1103: 45

Answer

$\dfrac{\sqrt 2}{3}+\ln(\sqrt 2+\sqrt 3)$

Work Step by Step

$Surface \ Area=\iint_{D} \sqrt {2+4x^2} dy dx=4 \times \int_{0}^1 \sqrt {\dfrac{1}{2}+x^2} dx-\int_{0}^1 2x \sqrt {2+4x^2} dx$ Set $2+4x^2 =a $ and $8x dx =da$ Now, $Surface Area=\sqrt 6+\ln(\sqrt 2+\sqrt 3) -\dfrac{1}{4} \int_2^6 a^{1/2} da \\=\sqrt 6+\ln(\sqrt 2+\sqrt 3) -\dfrac{1}{4} [\dfrac{2}{3}a^{3/2}]_2^6 $ $\implies =\sqrt 6+\ln(\sqrt 2+\sqrt 3)-\sqrt 6-\dfrac{\sqrt 2}{3}$ $\implies Surface \ Area=\dfrac{\sqrt 2}{3}+\ln(\sqrt 2+\sqrt 3)$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.