Calculus 8th Edition

Published by Cengage
ISBN 10: 1285740629
ISBN 13: 978-1-28574-062-1

Chapter 15 - Multiple Integrals - Review - Exercises - Page 1103: 44

Answer

$\dfrac{3 \pi\sqrt {1+a^2}}{a^2} $

Work Step by Step

$Surface \ Area=\iint_{D} \sqrt {1+\dfrac{a^2x^2}{x^2+y^2}+\dfrac{a^2y^2}{x^2+y^2}}$ $\implies =\iint_{D} \sqrt {1+\dfrac{a^2x^2+a^2y^2}{x^2+y^2}}$ $\implies=\sqrt {1+a^2} \iint_{D} dA$ Since, $(\dfrac{1}{a})^2 \leq x^2+y^2 \leq (\dfrac{2}{a})^2 $ or, $\dfrac{1}{a^2} \leq x^2+y^2 \leq \dfrac{4}{a^2} $ Now, $Surface \ Area= \sqrt {1+a^2} \times \iint_{D} dA=\sqrt {1+a^2} \pi [(\dfrac{2}{a})^2 -\pi (\dfrac{1}{a})^2] =\dfrac{3 \pi\sqrt {1+a^2}}{a^2} $
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.