Calculus 8th Edition

Published by Cengage
ISBN 10: 1285740629
ISBN 13: 978-1-28574-062-1

Chapter 15 - Multiple Integrals - Review - Exercises - Page 1103: 47

Answer

$$\dfrac{486}{5}$$

Work Step by Step

Set $x= r \cos \theta ; y=r \sin \theta $ Consider $I=\int_{-\pi/2}^{ \pi/2} \int_0^{3} (r^3 \cos^3 \theta+r^3 \cos \theta \sin^2 \theta) r dr d \theta=\int_{-\pi/2}^{ \pi/2} \int_0^{3} r^4 \ \cos \theta dr \ d \theta$ and, $I=\int_{-\pi/2}^{ \pi/2} \cos \theta dr d \theta \int_0^{3} r^4 dr= \dfrac{1}{5} \times [\sin \theta ]_{-\pi/2}^{ \pi/2}[r^5]_0^3$ $\implies=2 \times \dfrac{243}{5}$ $\implies =\dfrac{486}{5}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.