Calculus 8th Edition

Published by Cengage
ISBN 10: 1285740629
ISBN 13: 978-1-28574-062-1

Chapter 15 - Multiple Integrals - Review - Exercises - Page 1103: 48

Answer

$\dfrac{64 \pi}{9}$

Work Step by Step

We have: $I=\int_{-2}^{2}\int_{0} ^{\sqrt {4-y^2}}\int_{-\sqrt {4-x^2-y^2}} ^{\sqrt {4-x^2-y^2}} y^2 \sqrt {x^2+y^2+z^2} dz dy dx$ Apply spherical coordinates: $x =\rho \sin \phi \cos \theta; y =\rho \sin \phi \sin \theta$ and $\rho^2 =x^2+y^2+z^2$ Now, $I=\int_{0}^{\pi} \sin^3 \phi \ d\phi \times \int_{-\pi/2} ^{\pi/2 }\sin^2 \theta d \theta \times \int_0^2 \rho^6 d\rho =\dfrac{4}{3} \times [\dfrac{-\sin 2 \theta -2 \theta}{4}|_{-\pi/2} ^{\pi/2 }\times [ \dfrac{ \rho^6 }{6}|_0^2 $ and, $I=(\dfrac{4}{3} )( \dfrac{\pi}{2})( \dfrac{32}{3})=\dfrac{64 \pi}{9}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.