Calculus 8th Edition

Published by Cengage
ISBN 10: 1285740629
ISBN 13: 978-1-28574-062-1

Chapter 15 - Multiple Integrals - Review - Exercises - Page 1103: 33

Answer

$\dfrac{64}{15}$

Work Step by Step

Volume, $V=\iiint_{E} y z dV =\int_{0}^{ \pi }\int_{0} ^{2}\int_{0} ^{r \sin \theta } z \times r \sin \theta r dz dr \ d\theta $ or, $=\int_{0}^{ \pi }\int_{0} ^{2} r^2 \sin \theta[ (\dfrac{1}{2}) \times z^2 ]_0^{r \sin \theta}$ or, $=(\dfrac{1}{2})\times \int_{0}^{ \pi}\int_{0} ^{2} r^4 \sin^3 \theta dr d\theta $ or, $=(16/5) \int_{0}^{ \pi}\sin ^3 \theta d\theta $ Set $ a= \cos \theta$ and $ du =-\sin \theta d\theta$ So, $Volume =\dfrac{16}{5} \times \int_{-1}^1 (1-u^2) du=(\dfrac{16}{5}) ( \dfrac{4}{3}) =\dfrac{64}{15}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.