Calculus 8th Edition

Published by Cengage
ISBN 10: 1285740629
ISBN 13: 978-1-28574-062-1

Chapter 15 - Multiple Integrals - Review - Exercises - Page 1103: 38

Answer

$12 \pi$

Work Step by Step

$Volume=\iint_{x^2+y^2 \leq 4} \int_{0}^{3-y} dz dA$ $\implies Volume=\iint_{x^2+y^2 \leq 4} (3-y) dA $ $\implies Volume=3 \iint_{x^2+y^2 \leq 4} dA - \iint_{x^2+y^2 \leq 4} y dA$ Since, the inner integral is the integral of the odd continuous function in symmetric interval, this means that $\iint_{x^2+y^2 \leq 4} y dA=0$ Thus, $Volume=(3) \times (\pi) \times (2)^2 -0=12 \pi$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.