Calculus 8th Edition

Published by Cengage
ISBN 10: 1285740629
ISBN 13: 978-1-28574-062-1

Chapter 15 - Multiple Integrals - Review - Exercises - Page 1102: 32

Answer

$$\dfrac{13}{24}$$

Work Step by Step

$Volume=\int_{0}^{ \pi/2 }\int_{0} ^{1}\int_{0} ^{2-r \sin \theta } r^2 \cos \theta \space dx \space dr \space d\theta $ or, $=\int_{0}^{ \pi/2}\int_{0} ^{1} 2 r^2 \cos \theta - r^3 \cos \theta \sin \theta dr d\theta $ or, $=\int_{0}^{ \pi/2}\int_{0} ^{1} (2/3) \cos \theta -(\dfrac{1}{4}) \cos \theta \sin \theta d\theta $ Let $\sin \theta =a$ and $\cos \theta d\theta =da$ Now, $Volume =\dfrac{2}{3} \times |\sin \theta|_0^{\pi/2} - \dfrac{1 }{4} \int_0^1 a da $ or, $Volume=\dfrac{2}{3}-\dfrac{1}{8}=\dfrac{13}{24}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.