Calculus 8th Edition

Published by Cengage
ISBN 10: 1285740629
ISBN 13: 978-1-28574-062-1

Chapter 15 - Multiple Integrals - 15.1 Double Integrals over Rectangles - 15.1 Exercises - Page 1040: 33

Answer

$$\ \iint \limits_{R} y e^{-x y} d A =\frac{1}{2e^{6}} + \frac{5}{2} $$

Work Step by Step

Given$$\ \iint \limits_{R} y e^{-x y} d A, \quad R=[0,2] \times[0,3]$$ So, we get \begin{aligned} I&= \int_{0}^{3} \int_{0}^{2} y e^{-x y} dx \ dy \\ &=-\int_{0}^{3} \left[ e^{-x y}\right]_{0}^{2} dy \\ &=-\int_{0}^{3} e^{-2 y} dy +\int_{0}^{3} dy \\ &=-\int_{0}^{3} e^{-2 y} dy + y|_{0}^{3} \\ &=\frac{1}{2} e^{-2 y}|_{0}^{3} +3 -0 \\ &=\frac{1}{2} e^{-6} - \frac{1}{2} + 3 \\ &=\frac{1}{2e^{6}} + \frac{5}{2} \\ \end{aligned}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.