Calculus 8th Edition

Published by Cengage
ISBN 10: 1285740629
ISBN 13: 978-1-28574-062-1

Chapter 15 - Multiple Integrals - 15.1 Double Integrals over Rectangles - 15.1 Exercises - Page 1040: 24

Answer

$$\int_{0}^{1} \int_{0}^{1} x y \sqrt{x^{2}+y^{2}} d y d x= \frac{(\sqrt 2)^5-2}{15} $$

Work Step by Step

Given $$\int_{0}^{1} \int_{0}^{1} x y \sqrt{x^{2}+y^{2}} d y d x$$So we have \begin{aligned}I&=\int_{0}^{1} \int_{0}^{1} x y \sqrt{x^{2}+y^{2}} d y d x\\ &=\frac{1}{2}\int_{0}^{1} \int_{0}^{1} x(2 y) \left(x^{2}+y^{2}\right)^{\frac{1}{2}} d y d x\\ &=\frac{1}{2}\int_{0}^{1} x (\frac{2}{3}) \left(x^{2}+y^{2}\right)^{\frac{3}{2}}|_{0}^{1} \ \ \ d x\\ &=\frac{1}{3}\int_{0}^{1} x \left(x^{2}+y^{2}\right)^{\frac{3}{2}}|_{0}^{1} \ \ \ d x\\ &=\frac{1}{3}\int_{0}^{1} x \left(x^{2}+1\right)^{\frac{3}{2}} \ dx - \frac{1}{3}\int_{0}^{1} x \left(x^{2}+0\right)^{\frac{3}{2}} \ \ \ d x\\ &=\frac{1}{3}\int_{0}^{1} x \left(x^{2}+1\right)^{\frac{3}{2}} \ dx - \frac{1}{3}\int_{0}^{1} x^4 \ \ \ d x\\ &=\frac{1}{6}\int_{0}^{1} 2x \left(x^{2}+1\right)^{\frac{3}{2}} \ dx - \frac{1}{6}\int_{0}^{1} x^4 \ \ \ d x\\ &=\frac{1}{6} \frac{2}{5} \left(x^{2}+1\right)^{\frac{5}{2}}|_{0}^{1} - \frac{1}{15} x^5|_{0}^{1} \ \ \\ &=\frac{1}{15} \left(1+1\right)^{\frac{5}{2}} - \frac{1}{15} \left(0+1\right)^{\frac{5}{2}} - \frac{1}{15} \ \ \\ &= \frac{(\sqrt 2)^5}{15} - \frac{2}{15} \\ &= \frac{(\sqrt 2)^5-2}{15} \end{aligned}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.