Calculus 8th Edition

Published by Cengage
ISBN 10: 1285740629
ISBN 13: 978-1-28574-062-1

Chapter 15 - Multiple Integrals - 15.1 Double Integrals over Rectangles - 15.1 Exercises - Page 1040: 27

Answer

$$\int_{0}^{2} \int_{0}^{\pi / 4} x \sec ^{2} y d y d x=2$$

Work Step by Step

Given $$\int_{0}^{2} \int_{0}^{\pi / 4} x \sec ^{2} y d y d x$$ So, we have \begin{aligned} I&=\int_{0}^{2} \int_{0}^{\pi / 4} x \sec ^{2} y d y d x\\ &=\left[\int_{0}^{2} x \ d x\right]\left[\int_{0}^{\pi / 4} \sec ^{2} y \ d y\right]\\ & =\left[\frac{x^{2}}{2}\right]_{0}^{2} \cdot[\tan y]_{0}^{\pi / 4}\\ &=\left[\frac{2^{2}}{2}-\frac{0^{2}}{2}\right] \cdot\left[\tan \frac{\pi}{4}-\tan 0\right] \\ &=2(1)\\ &=2\end{aligned}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.