Calculus 8th Edition

Published by Cengage
ISBN 10: 1285740629
ISBN 13: 978-1-28574-062-1

Chapter 15 - Multiple Integrals - 15.1 Double Integrals over Rectangles - 15.1 Exercises - Page 1040: 19

Answer

$18$

Work Step by Step

$\int_{-3}^{3}\int_{0}^{\frac{\pi}{2}}(y+y^2\cos x)\, dx\,dy=\int_{-3}^{3}\biggl[yx+y^2\sin x\biggr]_{0}^{\frac{\pi}{2}}\, dy=\int_{-3}^{3}\frac{y\pi}{2}+y^2\, dy=\biggl[\dfrac{y^2\pi}{4}+\dfrac{y^3}{3}\biggr]_{-3}^{3}=18$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.