Calculus 8th Edition

Published by Cengage
ISBN 10: 1285740629
ISBN 13: 978-1-28574-062-1

Chapter 15 - Multiple Integrals - 15.1 Double Integrals over Rectangles - 15.1 Exercises - Page 1040: 28

Answer

$$\iint_{R}\left(y+x y^{-2}\right) d A =4$$

Work Step by Step

Given $$\iint_{R}\left(y+x y^{-2}\right) d A, \quad R=\{(x, y) | 0 \leqslant x \leqslant 2,1 \leqslant y \leqslant 2\}$$ So, we have \begin{aligned}I&= \iint \limits_{R}\left(y+x y^{-2}\right) d A\\ &=\int_{0}^{2} \int_{1}^{2}\left(y+x y^{-2}\right) d y d x\\ &=\int_{0}^{2}\left[\frac{y^{2}}{2}-x y^{-1}\right]_{y=1}^{y=2} d x\\ &=\int_{0}^{2}\left[ \frac{4}{2}-\frac{x}{2}-\frac{1}{2}+x\right] d x\\ &=\int_{0}^{2}\left[ \frac{4}{2}+\frac{x}{2}-\frac{1}{2} \right] d x\\ &= \left[ \frac{3x}{2}+\frac{x^2}{4 }\right]_{0}^{2} \\ &=\left[ \frac{6}{2}+\frac{2^2}{4}\right]-\left[ 0+\frac{0^2}{4}\right] \\ &=4 \end{aligned}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.