Answer
$$0.7336$$
Work Step by Step
$$Question: \int_0^{\pi /6} \int_0^{\pi /2}(sinx +siny)dydx$$
$Solution:$
$=\int_0^{\pi /6}(ysinx-cosy)_0^{\pi /2}dx$
$=\int_0^{\pi /6}[(\frac{\pi}{2}sinx-0)-(0-1)]dx$
$=\int_0^{\pi /6}(\frac{\pi}{2}sinx+1)dx$
$=(-\frac{\pi}{2}cosx+x)_0^{\pi /6}dx$
$= (-0.8364)-(-1.57)$
$$Answer\approx0.7336$$