Calculus 8th Edition

Published by Cengage
ISBN 10: 1285740629
ISBN 13: 978-1-28574-062-1

Chapter 15 - Multiple Integrals - 15.1 Double Integrals over Rectangles - 15.1 Exercises - Page 1040: 18

Answer

$$0.7336$$

Work Step by Step

$$Question: \int_0^{\pi /6} \int_0^{\pi /2}(sinx +siny)dydx$$ $Solution:$ $=\int_0^{\pi /6}(ysinx-cosy)_0^{\pi /2}dx$ $=\int_0^{\pi /6}[(\frac{\pi}{2}sinx-0)-(0-1)]dx$ $=\int_0^{\pi /6}(\frac{\pi}{2}sinx+1)dx$ $=(-\frac{\pi}{2}cosx+x)_0^{\pi /6}dx$ $= (-0.8364)-(-1.57)$ $$Answer\approx0.7336$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.