Calculus 8th Edition

Published by Cengage
ISBN 10: 1285740629
ISBN 13: 978-1-28574-062-1

Chapter 15 - Multiple Integrals - 15.1 Double Integrals over Rectangles - 15.1 Exercises - Page 1040: 31

Answer

$$\iint \limits_{R} x \sin (x+y) d A= \frac{\sqrt 3-1}{2} -\frac{\pi}{12}$$

Work Step by Step

Given $$\iint \limits_{R} x \sin (x+y) d A, \quad R=[0, \pi / 6] \times[0, \pi / 3]$$ So, we have \begin{aligned} I&=\iint \limits_{R} x \sin (x+y) d A\\ &=\int_{0}^{\pi / 3}\left[\int_{0}^{\pi / 6} x \sin (x+y) d x\right] d y\\ &= \end{aligned} Let \begin{aligned} I_1&= \int_{0}^{\pi / 6} x \sin (x+y) d x\\ \end{aligned} So by partition technique Let $$u=x \Rightarrow du= dx$$ $$dv=\sin (x+y) \ dx \Rightarrow v= -\cos (x+y) $$ So, we get \begin{aligned} I_1&=uv|_{0}^{\pi / 6}- \int_{0}^{\pi / 6} v du\\ &= -x \cos (x+y)|_{0}^{\pi / 6}+\int_{0}^{\pi / 6} \cos (x+y) d x\\ &= -x \cos (x+y)|_{0}^{\pi / 6}+\sin(x+y)|_{0}^{\pi / 6}\\ &= -\frac{\pi}{6} \cos (\frac{\pi}{6}+y) +0+\sin(\frac{\pi}{6}+y) -\sin( y)\\ &= -\frac{\pi}{6} \cos (\frac{\pi}{6}+y) +\sin(\frac{\pi}{6}+y) -\sin( y)\\ \end{aligned} so, we get \begin{aligned} I& =\int_{0}^{\pi / 3}\left[ -\frac{\pi}{6} \cos (\frac{\pi}{6}+y) +\sin(\frac{\pi}{6}+y) -\sin( y) \right] d y\\ &= \left[ -\frac{\pi}{6} \sin (\frac{\pi}{6}+y) -\cos(\frac{\pi}{6}+y)+\cos( y) \right] _{0}^{\pi / 3}\\ &= \left[ -\frac{\pi}{6} \sin (\frac{\pi}{6}+\frac{\pi}{3}) -\cos(\frac{\pi}{6}+\frac{\pi}{3})+\cos( \frac{\pi}{3}) \right] - \left[ -\frac{\pi}{6} \sin (\frac{\pi}{6}+0) -\cos(\frac{\pi}{6}+0)+\cos( 0) \right]\\ &= \left[ -\frac{\pi}{6} \sin (\frac{\pi}{2}) -\cos(\frac{\pi}{2})+\cos( \frac{\pi}{3}) \right] - \left[ -\frac{\pi}{6} \sin (\frac{\pi}{6} ) -\cos(\frac{\pi}{6} )+1 \right]\\ &= \left[ -\frac{\pi}{6} + \frac{1}{2}\right] - \left[ -\frac{\pi}{6} \frac{1}{2} - \frac{\sqrt 3}{2} +1 \right]\\ &= \frac{\sqrt 3-1}{2} -\frac{\pi}{12} \\ \end{aligned}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.