Calculus 8th Edition

Published by Cengage
ISBN 10: 1285740629
ISBN 13: 978-1-28574-062-1

Chapter 15 - Multiple Integrals - 15.1 Double Integrals over Rectangles - 15.1 Exercises - Page 1040: 17

Answer

$$\frac{5}{2}-\frac{1}{e} \approx 2.132$$

Work Step by Step

$$ Question: \int_0^1 \int_1^2 (x+e^{-y}) dxdy $$ $Solution: $ $ =\int_0^1 (\frac{x^2}{2}+xe^{-y})_1^2dy$ $= \int_0^1 [(2+2e^{-y})-(\frac{1}{2}+e^{-y})]dy$ $= \int_0^1 (\frac{3}{2}+e^{-y})dy$ $= (\frac{3}{2}y - e^{-y})_0^1$ $= (\frac{3}{2}-\frac{1}{e})-(0-1)$ $= \frac{5}{2}-\frac{1}{e}$ $$Answer\approx2.132$$ $$\blacksquare$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.