Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 8 - Techniques of Integration - 8.7 Improper Integrals - Exercises - Page 440: 30

Answer

$\frac{3}{4e^{2}}$

Work Step by Step

$u$ = $x$ $u'$ = $1$ $v'$ = $e^{-2x}$ $v$ = $-\frac{1}{2}e^{-2x}$ $\int{xe^{-2x}}dx$ = $-\frac{1}{2}xe^{-2x}+\frac{1}{2}\int{e^{-2x}}dx$ = $-\frac{1}{2}xe^{-2x}-\frac{1}{4}e^{-2x}+C$ $\int_1^{\infty}{xe^{-2x}}dx$ = $\lim\limits_{R \to {\infty}}$$[-\frac{1}{2}xe^{-2x}-\frac{1}{4}e^{-2x}]|_1^R$ = $\frac{3}{4e^{2}}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.