Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 8 - Techniques of Integration - 8.7 Improper Integrals - Exercises - Page 440: 29

Answer

$\frac{1}{2}$

Work Step by Step

$u$ = $e^{-x}$ $u'$ = $-e^{-x}$ $v'$ = $cosx$ $v$ = $sinx$ $\int{e^{-x}cosxdx}$ = $e^{-x}sinx$ - $\int{-e^{-x}sinxdx}$ = $e^{-x}sinx$ + $\int{e^{-x}sinxdx}$ use integration by parts again $u$ = $e^{-x}$ $u'$ = $-e^{-x}$ $v'$ = $sinx$ $v$ = $-cosx$ $\int{e^{-x}cosxdx}$ = $e^{-x}sinx+[-e^{-x}cosx-\int{-e^{-x}cosxdx}]$ $\int{e^{-x}cosxdx}$ = $\frac{1}{2}e^{-x}(sinx-cosx)+C$ $\int_0^{\infty}{e^{-x}cosxdx}$ = $\lim\limits_{R \to {\infty}}$$(\frac{sinR-cosR}{2e^{R}}+\frac{1}{2})$ = $\frac{1}{2}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.