Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 8 - Techniques of Integration - 8.7 Improper Integrals - Exercises - Page 440: 10

Answer

$20 \cdot 5^{(1 / 20)}$

Work Step by Step

\begin{aligned} \int_{0}^{5} \frac{d x}{x^{19 / 20}} &=\lim _{R \rightarrow 0} \int_{R}^{5} \frac{d x}{x^{19 / 20}} \\ &=\lim _{R \rightarrow 0}\left.\frac{x^{(1 / 20)}}{1 / 20}\right|_{R} ^{5} \\ &=\lim _{R \rightarrow 0}\left(20 \cdot 5^{(1 / 20)}-20 \cdot R^{(1 / 20)} \right)\\ &= 20 \cdot 5^{(1 / 20)} \end{aligned} Then integral converges to $20 \cdot 5^{(1 / 20)}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.