Answer
$20 \cdot 5^{(1 / 20)}$
Work Step by Step
\begin{aligned}
\int_{0}^{5} \frac{d x}{x^{19 / 20}} &=\lim _{R \rightarrow 0} \int_{R}^{5} \frac{d x}{x^{19 / 20}} \\
&=\lim _{R \rightarrow 0}\left.\frac{x^{(1 / 20)}}{1 / 20}\right|_{R} ^{5} \\
&=\lim _{R \rightarrow 0}\left(20 \cdot 5^{(1 / 20)}-20 \cdot R^{(1 / 20)} \right)\\
&= 20 \cdot 5^{(1 / 20)} \end{aligned}
Then integral converges to $20 \cdot 5^{(1 / 20)}$