Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 8 - Techniques of Integration - 8.7 Improper Integrals - Exercises - Page 440: 11

Answer

$$4$$

Work Step by Step

\begin{aligned} \int_{0}^{4} \frac{d x}{\sqrt{4-x}} &=\lim _{R \rightarrow 0} \int_{R}^{4} \frac{d x}{\sqrt{4-x}} \\ &=\lim _{R \rightarrow 0} \int_{R}^{4} \frac{(-2) d x}{(-2) \sqrt{4-x}} \\ &= \lim _{R \rightarrow 0} -2\sqrt{4-x} \bigg|_{0}^{4}\\ &= \lim _{R \rightarrow 0} 2\sqrt{4-R}\\ &=4 \end{aligned}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.