Answer
$$\frac{1}{2}$$
Work Step by Step
\begin{aligned}
\int_{0}^{\infty} \frac{d x}{(x+1)^{3}} &=\lim _{R \rightarrow \infty} \int_{0}^{R} \frac{d x}{(x+1)^{3}} \\
&=\lim _{R \rightarrow \infty} \left.\frac{(x+1)^{-2}}{-2}\right|_{0} ^{R} \\ &=\lim _{R \rightarrow \infty} \frac{1}{2}-\frac{1}{2} \frac{1}{(R+1)^{2}} \\
&=\frac{1}{2}
\end{aligned}