Answer
$$2$$
Work Step by Step
\begin{aligned}
\int_{-3}^{\infty} \frac{d x}{(x+4)^{3 / 2}} &=\lim _{R \rightarrow \infty} \int_{-3}^{R} \frac{d x}{(x+4)^{3 / 2}} \\
&=\lim _{R \rightarrow \infty} \left.\frac{(x+4)^{(-1 / 2)}}{-1 / 2}\right|_{-3} ^{R} \\
&=\lim _{R \rightarrow \infty} \left(2-\frac{2}{(R+4)(1 / 2)} \right)\\
&= 2\end{aligned}