Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 8 - Techniques of Integration - 8.7 Improper Integrals - Exercises - Page 440: 19

Answer

$$\frac{1}{3 e^{12}}$$

Work Step by Step

\begin{aligned} \int_{4}^{\infty} e^{-3 x} d x &=\lim _{R \rightarrow \infty} \int_{4}^{R} e^{-3 x} d x \\ &=\lim _{R \rightarrow \infty}\left.\frac{e^{-3 x}}{-3}\right|_{4} ^{R} \\ &=\lim _{R \rightarrow \infty} \left(\frac{1}{3 e^{12}}-\frac{1}{3 e^{3 R}} \right) \\ &=\frac{1}{3 e^{12}} \end{aligned} Converges.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.