Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 8 - Techniques of Integration - 8.7 Improper Integrals - Exercises - Page 440: 28

Answer

$8\sqrt 3$

Work Step by Step

$u$ = $x-3$ $du$ = $dx$ $\int{\frac{x}{\sqrt {x-3}}}dx$ = $\int{\frac{u+3}{\sqrt u}}du$ = $\frac{2}{3}u^{\frac{3}{2}}+6u^{\frac{1}{2}}+C$ = $\frac{2}{3}(x-3)^{\frac{3}{2}}+6(x-3)^{\frac{1}{2}}+C$ $\int_3^6{\frac{x}{\sqrt {x-3}}}dx$ = $\lim\limits_{R \to 3^{+}}$$\int_R^6{\frac{x}{\sqrt {x-3}}}dx$ = $\lim\limits_{R \to 3^{+}}[8\sqrt 3-\frac{2}{3}(R-3)^{\frac{3}{2}}-6(R-3)^{\frac{1}{2}}]$ = $8\sqrt 3$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.