Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 8 - Techniques of Integration - 8.7 Improper Integrals - Exercises - Page 440: 24

Answer

$$0$$

Work Step by Step

\begin{aligned} \int_{-4}^{0} \frac{d x}{(x+2)^{1 / 3}} &=\int_{-4}^{-2} \frac{d x}{(x+2)^{1 / 3}}+\int_{-2}^{0} \frac{d x}{(x+2)^{1 / 3}} \\ &=\lim _{R \rightarrow-2^{-}} \int_{-4}^{R} \frac{d x}{(x+2)^{1 / 3}}+\lim _{R \rightarrow-2^{+}} \int_{R}^{0} \frac{d x}{(x+2)^{1 / 3}} \\ &=\left.\lim _{R \rightarrow-2^{-}} \frac{3}{2}(x+2)^{2 / 3}\right|_{-4} ^{R}+\lim _{R \rightarrow-2^{+}} \int_{R}^{0} \frac{d x}{(x+2)^{1 / 3}} \\ &=\frac{3}{2} \lim _{R \rightarrow-2^{-}}\left((R+2)^{2 / 3}-(-4+2)^{2 / 3}\right)+\frac{3}{2} \lim _{R \rightarrow-2^{+}}\left((0+2)^{2 / 3}-(R+2)^{2 / 3}\right) \\ &=\frac{3}{2}(0-\sqrt[3]{4}+\sqrt[3]{4}-0) \\ &=0 \end{aligned}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.