Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 7 - Exponential Functions - 7.9 Hyperbolic Functions - Exercises - Page 384: 7

Answer

See the proof below.

Work Step by Step

Using the definition of $\cosh x$, we have the following \begin{aligned} \cosh (x+y) &=\frac{e^{x+y}+e^{-(x+y)}}{2}=\frac{2 e^{x+y}+2 e^{-(x+y)}}{4} \\ &=\frac{e^{x+y}+e^{-x+y}+e^{x-y}+e^{-(x+y)}}{4}+\frac{e^{x+y}-e^{-x+y}-e^{x-y}+e^{-(x+y)}}{4} \\ &=\left(\frac{e^{x}+e^{-x}}{2}\right)\left(\frac{e^{y}+e^{-y}}{2}\right)+\left(\frac{e^{x}-e^{-x}}{2}\right)\left(\frac{e^{y}-e^{-y}}{2}\right) \\ &=\cosh x \cosh y+\sinh x \sinh y \end{aligned} which completes the proof.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.