Answer
$$\ \int \frac{\cosh x}{\sinh^2 x} dx
=- \frac{1}{\sinh u}+c $$
Work Step by Step
Let $ u=\sinh x $, then $ du=\cosh x dx $ and hence
$$\ \int \frac{\cosh x}{\sinh^2 x} dx =\int \frac{du}{u^2} = - \frac{1}{u}+c
=- \frac{1}{\sinh u}+c $$