Answer
$$\cosh \left(\sinh ^{-1} t\right)=\sqrt{t^{2}+1}$$
Work Step by Step
Let $x= \sinh^{-1}t\ \ \to \ \ \sinh x=t $
Then we have:
\begin{align*}
\cosh ^2\left(\sinh ^{-1} t\right)&=\cosh^2 x\\
&= 1+\sinh^2x\\
\cosh x&=\sqrt{1+\sinh^2 x}\\
\cosh (\sinh^{-1}t)&= \sqrt{1+t^2 }
\end{align*}