Answer
$$ \sinh^{-1}(1)$$
Work Step by Step
Since
$$\frac{d}{dx}\sinh^{-1}x=\frac{1}{\sqrt{1+x^2}}$$
Then
\begin{align*}
\int_{0}^{1} \frac{1}{\sqrt{1+x^{2}}} d x&= \sinh^{-1}x\bigg|_{0}^{1}\\
&= \sinh^{-1}(1)- \sinh^{-1}(0)\\
&= \sinh^{-1}(1)
\end{align*}