Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 7 - Exponential Functions - 7.9 Hyperbolic Functions - Exercises - Page 384: 15

Answer

$$ y'=\frac{(1+\tanh t) (-csch^2 t)-\coth t( \, sech^2 t)}{(1+\tanh t)^2} .$$

Work Step by Step

Since $ y=\frac{\coth t}{1+\tanh t} $, then the derivative $ y'$, using the quotient rule $(u/v)'=\frac{vu'-uv'}{v^2}$ and the facts that $(\tanh t)'=sech^2t $ $(\coth t)'=-csch^2t $, is given by $$ y'=\frac{(1+\tanh t) (-csch^2 t)-\coth t( \, sech^2 t)}{(1+\tanh t)^2} .$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.