Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 4 - Applications of the Derivative - 4.1 Linear Approximation and Applications - Exercises - Page 174: 64

Answer

$$L(x)=\frac{5}{3}(x-1)+1 $$ $$1.608\%$$

Work Step by Step

Given $$(1.2)^{5 / 3}$$ Consider $f(x)=x^{5 / 3}, a=1,$ and $\Delta x=0.2$, since \begin{align*} f^{\prime}(x)&=\frac{5}{3}x^{2/3}\\ f^{\prime}(1)&=\frac{5}{3} \end{align*} Then the linearization to $f (x)$ is given by \begin{align*} L(x)&=f^{\prime}(a)(x-a)+f(a)\\ &=\frac{5}{3}(x-1)+1 \end{align*} Since \begin{align*} L(1.2) &=\frac{5}{3}(1.2-1)+1 \\ &\approx 1.3333 \end{align*} Hence the error given $$ | (1.2)^{5 /3}-1.3333|=0.02179$$ and the percentage is $$\frac{0.02179 }{(1.2)^{5 /3}}\times 100 \% \approx 1.608\%$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.