Answer
$$L(x)= 1$$
Work Step by Step
Given
$$y=\left(1+x^{2}\right)^{-1 / 2}, \quad a=0$$
Since $y(0)=1$ and
\begin{align*}
y'(x)&=-x(1+x^2)^{-3/ 2}\\
y'(0)&=0
\end{align*}
Then the linearization at $a=0 $ given by
\begin{align*}
L(x)&\approx y^{\prime}(a)(x-a)+y(a)\\
&=y^{\prime}(0)(x)+y(0)\\
&= 1
\end{align*}