Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 4 - Applications of the Derivative - 4.1 Linear Approximation and Applications - Exercises - Page 174: 50

Answer

$$ L(x) \approx \frac{-1}{16}\left(x-3\right)+\frac{1}{2} $$

Work Step by Step

Given $$y=(1+x)^{-1 / 2}, \quad a=3$$ Since $y(3)=\frac{1}{2}$ and \begin{align*} y'(x)&=\frac{-1}{2}(1+x)^{-3/ 2}\\ y'(3)&=\frac{-1}{16} \end{align*} Then the linearization at $a=3 $ is given by \begin{align*} L(x)&\approx y^{\prime}(a)(x-a)+y(a)\\ &=y^{\prime}(3)(x-3)+y(3)\\ &=\frac{-1}{16}\left(x-3\right)+\frac{1}{2} \end{align*}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.