Answer
$$L(x) \approx \frac{-1}{2}x +1 $$
Work Step by Step
Given
$$y=(1+x)^{-1 / 2}, \quad a=0 $$
Since $y(0)=1$ and
\begin{align*}
y'(x)&=\frac{-1}{2}(1+x)^{-3/ 2}\\
y'(0)&=\frac{-1}{2}
\end{align*}
Then the linearization at $a=0$ is given by
\begin{align*}
L(x)&\approx y^{\prime}(a)(x-a)+y(a)\\
&=\frac{-1}{2}\left(x-0\right)+1 \\
&=\frac{-1}{2}x +1
\end{align*}