Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 4 - Applications of the Derivative - 4.1 Linear Approximation and Applications - Exercises - Page 174: 59

Answer

$$L(x)\approx -\frac{1}{128} x+\frac{3}{8} $$ $$ 0.14 4\%~error$$

Work Step by Step

Given $$\frac{1}{\sqrt 17} $$ Consider $f(x)=x^{-1 / 2}, a=16,$ and $\Delta x=1$, since \begin{align*} f^{\prime}(x)&=-\frac{1}{2} x^{-3 / 2}\\ f^{\prime}(16)&=-\frac{1}{128} \end{align*} Then the linearization to $f (x)$ is given by \begin{align*} L(x)&=f^{\prime}(a)(x-a)+f(a)\\ &=-\frac{1}{128}(x-16)+\frac{1}{4}\\ &=-\frac{1}{128} x+\frac{3}{8} \end{align*} Since \begin{align*} L(17)&= f(17)\\ &=\frac{1}{\sqrt{17}}\\ &\approx -\frac{1}{128} (17)+\frac{3}{8}\\ &\approx 0.24219 \end{align*} Hence the error is given by $$ | \frac{1}{\sqrt{17}}-0.24219|=4.35\times 10^{-4}$$ and the error percentage is $$\frac{4.35\times 10^{-4}}{1/\sqrt{17}}\times 100 \% \approx 0.14 4\%$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.