Answer
$\frac{4-x}{4}$
Work Step by Step
Linearization of $ f(x)$ at $ x=a $ is
$ L(x)=f(a)+f'(a)(x-a)$
Knowing that $ f(x)=\frac{1}{x}$, $ f'(x)=-\frac{1}{x^{2}}$ and $ a=2$, we have
$ L(x)=\frac{1}{2}-\frac{1}{2^{2}}(x-2)=\frac{1}{2}-\frac{x}{4}+\frac{1}{2}=1-\frac{x}{4}=\frac{4-x}{4}$