Answer
$L(x)$ = $\frac{\pi}{4}(x-1)+\frac{1}{2}$
Work Step by Step
$f(x)$ = $tan^{-1}x$
$f'(x)$ = $\frac{1}{1+x^{2}}$
$f(a)$ = $f(1)$ = $\frac{\pi}{4}$
$f'(a)$ = $f'(1)$ = $\frac{1}{2}$
$L(x)$ = $f'(a)(x-a)+f(a)$
$L(x)$ = $\frac{\pi}{4}(x-1)+\frac{1}{2}$