Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 16 - Multiple Integration - 16.5 Applications of Multiple Integrals - Exercises - Page 892: 51

Answer

$P\left( {X \ge 12;Y \ge 12} \right) \simeq 0.016$

Work Step by Step

We have the joint probability distribution function: $p\left( {x,y} \right) = \left\{ {\begin{array}{*{20}{c}} {\frac{1}{{9216}}\left( {48 - 2x - y} \right)}&{{\rm{if}{\ }}x \ge 0,y \ge 0,2x + y \le 48}\\ 0&{{\rm{otherwise}}} \end{array}} \right.$ Notice that the shaded region in Figure 20 represent the domain where the probability that both components function for at least 12 months without failing. Let ${\cal D}$ denote this shaded region. So, we need to find the domain description of ${\cal D}$. Step 1. Find the intersection of the line $2x+y=48$ and $y=12$: $2x+12=48$ $2x=36$ $x=18$ So, the range of $x$ in the shaded region is $12 \le x \le 18$. Step 2. Describe ${\cal D}$ We can consider ${\cal D}$ as a vertically simple region with description: ${\cal D} = \left\{ {\left( {x,y} \right)|12 \le x \le 18,12 \le y \le 48 - 2x} \right\}$ So, the probability that both components function for at least $12$ months without failing is given by $P\left( {X \ge 12;Y \ge 12} \right) = \mathop \smallint \limits_{}^{} \mathop \smallint \limits_{\cal D}^{} p\left( {x,y} \right){\rm{d}}y{\rm{d}}x$ $ = \frac{1}{{9216}}\mathop \smallint \limits_{x = 12}^{18} \mathop \smallint \limits_{y = 12}^{48 - 2x} \left( {48 - 2x - y} \right){\rm{d}}y{\rm{d}}x$ $ = \frac{1}{{9216}}\mathop \smallint \limits_{x = 12}^{18} \left( {\left( {\left( {48 - 2x} \right)y - \frac{1}{2}{y^2}} \right)|_{12}^{48 - 2x}} \right){\rm{d}}x$ $ = \frac{1}{{9216}}\mathop \smallint \limits_{x = 12}^{18} \left( {{{\left( {48 - 2x} \right)}^2} - \frac{1}{2}{{\left( {48 - 2x} \right)}^2} - \left( {48 - 2x} \right)12 + 72} \right){\rm{d}}x$ $ = \frac{1}{{9216}}\mathop \smallint \limits_{x = 12}^{18} \left( {\frac{1}{2}{{\left( {48 - 2x} \right)}^2} + 24x - 504} \right){\rm{d}}x$ $ = \frac{1}{{9216}}\left( {\left( { - \frac{1}{{12}}{{\left( {48 - 2x} \right)}^3} + 12{x^2} - 504x} \right)|_{12}^{18}} \right)$ $ = \frac{1}{{9216}}\left( { - 144 + 3888 - 9072 + 1152 - 1728 + 6048} \right)$ $ = \frac{1}{{64}} \simeq 0.016$ So, $P\left( {X \ge 12;Y \ge 12} \right) \simeq 0.016$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.