Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 16 - Multiple Integration - 16.5 Applications of Multiple Integrals - Exercises - Page 892: 48

Answer

${I_z} = \frac{{14\pi }}{{15}}$

Work Step by Step

We have the solid region ${\cal W}$ inside the hyperboloid ${x^2} + {y^2} = {z^2} + 1$ between $z=0$ and $z=1$. From the figure attached, we see that ${\cal W}$ is bounded below by $z=0$ and bounded above by $z=1$. So, $0 \le z \le 1$. The hyperboloid in cylindrical coordinates is ${r^2} = {z^2} + 1$. Since ${\cal W}$ is bounded by the hyperboloid, $r$ varies from $0$ to $r = \sqrt {{z^2} + 1} $. Using the cylindrical coordinates, the description of ${\cal W}$: ${\cal W} = \left\{ {\left( {r,\theta ,z} \right)|0 \le \theta \le 2\pi ,0 \le z \le 1,0 \le r \le \sqrt {{z^2} + 1} } \right\}$ Assume that the mass density is $\delta \left( {x,y,z} \right) = 1$. Using ${x^2} + {y^2} = {r^2}$, we evaluate the moment of inertia ${I_z}$ in cylindrical coordinates: ${I_z} = \mathop \smallint \limits_{}^{} \mathop \smallint \limits_{}^{} \mathop \smallint \limits_{\cal W}^{} \left( {{x^2} + {y^2}} \right)\delta \left( {x,y,z} \right){\rm{d}}V$ $ = \mathop \smallint \limits_{\theta = 0}^{2\pi } \mathop \smallint \limits_{z = 0}^1 \mathop \smallint \limits_{r = 0}^{\sqrt {{z^2} + 1} } \left( {{r^2}} \right)r{\rm{d}}r{\rm{d}}z{\rm{d}}\theta $ $ = \frac{1}{4}\mathop \smallint \limits_{\theta = 0}^{2\pi } \mathop \smallint \limits_{z = 0}^1 \left( {{r^4}|_0^{\sqrt {{z^2} + 1} }} \right){\rm{d}}z{\rm{d}}\theta $ $ = \frac{1}{4}\mathop \smallint \limits_{\theta = 0}^{2\pi } \mathop \smallint \limits_{z = 0}^1 \left( {{z^4} + 2{z^2} + 1} \right){\rm{d}}z{\rm{d}}\theta $ $ = \frac{1}{4}\mathop \smallint \limits_{\theta = 0}^{2\pi } \left( {\left( {\frac{1}{5}{z^5} + \frac{2}{3}{z^3} + z} \right)|_0^1} \right){\rm{d}}\theta $ $ = \frac{1}{4}\mathop \smallint \limits_{\theta = 0}^{2\pi } \left( {\frac{1}{5} + \frac{2}{3} + 1} \right){\rm{d}}\theta $ $ = \frac{7}{{15}}\mathop \smallint \limits_{\theta = 0}^{2\pi } {\rm{d}}\theta = \frac{{14\pi }}{{15}}$ So, ${I_z} = \frac{{14\pi }}{{15}}$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.