Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 16 - Multiple Integration - 16.5 Applications of Multiple Integrals - Exercises - Page 892: 34

Answer

The center of mass: $\left( {{x_{CM}},{y_{CM}}} \right) = \left( {\frac{3}{4},\frac{3}{2}} \right)$.

Work Step by Step

We have the triangular domain ${\cal D}$ bounded by the coordinate axes and the line $y=3-x$, with mass density $\delta \left( {x,y} \right) = y$. From the figure attached, we see that ${\cal D}$ can be considered as a vertically simple region with the description: ${\cal D} = \left\{ {\left( {x,y} \right)|0 \le x \le 3,0 \le y \le 3 - x} \right\}$ Using Eq. (1), we evaluate the total mass: $M = \mathop \smallint \limits_{}^{} \mathop \smallint \limits_{\cal D}^{} \delta \left( {x,y} \right){\rm{d}}A = \mathop \smallint \limits_{x = 0}^3 \mathop \smallint \limits_{y = 0}^{3 - x} y{\rm{d}}y{\rm{d}}x$ $ = \frac{1}{2}\mathop \smallint \limits_{x = 0}^3 \left( {{y^2}|_0^{3 - x}} \right){\rm{d}}x$ $ = \frac{1}{2}\mathop \smallint \limits_{x = 0}^3 \left( {9 - 6x + {x^2}} \right){\rm{d}}x$ $ = \frac{1}{2}\left( {9x - 3{x^2} + \frac{1}{3}{x^3}} \right)|_0^3$ $ = \frac{1}{2}\left( {27 - 27 + 9} \right) = \frac{9}{2}$ 1. Evaluate the $x$-coordinate of the center of mass: ${x_{CM}} = \frac{{{M_y}}}{M} = \frac{1}{M}\mathop \smallint \limits_{}^{} \mathop \smallint \limits_{\cal D}^{} x\delta \left( {x,y} \right){\rm{d}}A = \frac{2}{9}\mathop \smallint \limits_{x = 0}^3 \mathop \smallint \limits_{y = 0}^{3 - x} xy{\rm{d}}y{\rm{d}}x$ $ = \frac{1}{9}\mathop \smallint \limits_{x = 0}^3 x\left( {{y^2}|_0^{3 - x}} \right){\rm{d}}x$ $ = \frac{1}{9}\mathop \smallint \limits_{x = 0}^3 \left( {9x - 6{x^2} + {x^3}} \right){\rm{d}}x$ $ = \frac{1}{9}\left( {\frac{9}{2}{x^2} - 2{x^3} + \frac{1}{4}{x^4}} \right)|_0^3$ $ = \frac{1}{9}\left( {\frac{{81}}{2} - 54 + \frac{{81}}{4}} \right) = \frac{3}{4}$ 2. Evaluate the $y$-coordinate of the center of mass: ${y_{CM}} = \frac{{{M_x}}}{M} = \frac{1}{M}\mathop \smallint \limits_{}^{} \mathop \smallint \limits_{\cal D}^{} y\delta \left( {x,y} \right){\rm{d}}A = \frac{2}{9}\mathop \smallint \limits_{x = 0}^3 \mathop \smallint \limits_{y = 0}^{3 - x} {y^2}{\rm{d}}y{\rm{d}}x$ $ = \frac{2}{{27}}\mathop \smallint \limits_{x = 0}^3 \left( {{y^3}|_0^{3 - x}} \right){\rm{d}}x$ $ = \frac{2}{{27}}\mathop \smallint \limits_{x = 0}^3 {\left( {3 - x} \right)^3}{\rm{d}}x$ $ = - \frac{1}{{54}}\left( {{{\left( {3 - x} \right)}^4}|_0^3} \right) = - \frac{1}{{54}}\left( { - 81} \right) = \frac{3}{2}$ Thus, the center of mass: $\left( {{x_{CM}},{y_{CM}}} \right) = \left( {\frac{3}{4},\frac{3}{2}} \right)$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.