Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 16 - Multiple Integration - 16.5 Applications of Multiple Integrals - Exercises - Page 892: 30

Answer

${I_x} = 0$ and ${I_0} = 0$

Work Step by Step

Using the information in Exercise 29, we have the region ${\cal R}$, a rectangle $\left[ { - a,a} \right] \times \left[ {b, - b} \right]$. We have the mass density of $\delta \left( {x,y} \right) = x$. Evaluate the moment of inertia relative to the $x$-axis: ${I_x} = \mathop \smallint \limits_{}^{} \mathop \smallint \limits_{\cal R}^{} {y^2}\delta \left( {x,y} \right){\rm{d}}A = \mathop \smallint \limits_{x = - a}^a \mathop \smallint \limits_{y = - b}^b {y^2}\delta \left( {x,y} \right){\rm{d}}y{\rm{d}}x$ $ = \mathop \smallint \limits_{x = - a}^a \mathop \smallint \limits_{y = - b}^b x{y^2}{\rm{d}}y{\rm{d}}x$ $ = \left( {\mathop \smallint \limits_{x = - a}^a x{\rm{d}}x} \right)\left( {\mathop \smallint \limits_{y = - b}^b {y^2}{\rm{d}}y} \right)$ $ = \frac{1}{6}\left( {{x^2}|_{ - a}^a} \right)\left( {{y^3}|_{ - b}^b} \right) = \frac{1}{6}\left( 0 \right)\left( {2{b^3}} \right) = 0$ Evaluate the moment of inertia relative to the $y$-axis: ${I_y} = \mathop \smallint \limits_{}^{} \mathop \smallint \limits_{\cal R}^{} {x^2}\delta \left( {x,y} \right){\rm{d}}A = \mathop \smallint \limits_{x = - a}^a \mathop \smallint \limits_{y = - b}^b {x^2}\delta \left( {x,y} \right){\rm{d}}y{\rm{d}}x$ $ = \mathop \smallint \limits_{x = - a}^a \mathop \smallint \limits_{y = - b}^b {x^3}{\rm{d}}y{\rm{d}}x$ $ = \left( {\mathop \smallint \limits_{x = - a}^a {x^3}{\rm{d}}x} \right)\left( {\mathop \smallint \limits_{y = - b}^b {\rm{d}}y} \right)$ $ = \frac{1}{4}\left( {{x^4}|_{ - a}^a} \right)\left( {y|_{ - b}^b} \right)$ Since $\mathop \smallint \limits_{x = - a}^a {x^3}{\rm{d}}x = \frac{1}{4}\left( {{x^4}|_{ - a}^a} \right) = 0$, so, ${I_y} = 0$. The polar moment of inertia, ${I_0}$ ${I_0} = {I_x} + {I_y} = 0$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.