Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 16 - Multiple Integration - 16.5 Applications of Multiple Integrals - Exercises - Page 892: 37

Answer

The coordinates of the centroid: $\left( {\bar x,\bar y} \right) = \left( {\frac{a}{2},\frac{{2b}}{5}} \right)$.

Work Step by Step

We have the domain ${\cal D}$, between the line $y = \frac{b}{a}x$ and the parabola $y = \frac{b}{{{a^2}}}{x^2}$, where $a,b > 0$. The mass density is $\delta \left( {x,y} \right) = 1$. We find the intersection of the line $y = \frac{b}{a}x$ and the parabola $y = \frac{b}{{{a^2}}}{x^2}$: $y = \frac{b}{a}x = \frac{b}{{{a^2}}}{x^2}$ Multiplying both sides by $\frac{{{a^2}}}{b}$ gives $ax = {x^2}$ ${x^2} - ax = 0$ $x\left( {x - a} \right) = 0$ So, the intersections occur at $x=0$ and $x=a$. We describe ${\cal D}$ as a vertically simple domain such that the description is given by: ${\cal D} = \left\{ {\left( {x,y} \right)|0 \le x \le a,\frac{b}{{{a^2}}}{x^2} \le y \le \frac{b}{a}x} \right\}$ By definition, the centroid is given by $\bar x = \frac{1}{A}\mathop \smallint \limits_{}^{} \mathop \smallint \limits_{\cal D}^{} x{\rm{d}}A$, ${\ \ \ }$ $\bar y = \frac{1}{A}\mathop \smallint \limits_{}^{} \mathop \smallint \limits_{\cal D}^{} y{\rm{d}}A$, where $A$ is the area of ${\cal D}$. Evaluate the area: $A = \mathop \smallint \limits_{}^{} \mathop \smallint \limits_{\cal D}^{} {\rm{d}}A = \mathop \smallint \limits_{x = 0}^a \mathop \smallint \limits_{y = b{x^2}/{a^2}}^{bx/a} {\rm{d}}y{\rm{d}}x$ $ = \mathop \smallint \limits_{x = 0}^a \left( {y|_{b{x^2}/{a^2}}^{bx/a}} \right){\rm{d}}x$ $ = \mathop \smallint \limits_{x = 0}^a \left( {\frac{b}{a}x - \frac{b}{{{a^2}}}{x^2}} \right){\rm{d}}x$ $ = \frac{b}{a}\mathop \smallint \limits_{x = 0}^a \left( {x - \frac{1}{a}{x^2}} \right){\rm{d}}x$ $ = \frac{b}{a}\left( {\left( {\frac{1}{2}{x^2} - \frac{1}{{3a}}{x^3}} \right)|_0^a} \right) = \frac{b}{a}\left( {\frac{{{a^2}}}{2} - \frac{{{a^2}}}{3}} \right) = \frac{{ab}}{6}$ Evaluate the average of $x$-coordinate: $\bar x = \frac{1}{A}\mathop \smallint \limits_{}^{} \mathop \smallint \limits_{\cal D}^{} x{\rm{d}}A = \frac{6}{{ab}}\mathop \smallint \limits_{x = 0}^a \mathop \smallint \limits_{y = b{x^2}/{a^2}}^{bx/a} x{\rm{d}}y{\rm{d}}x$ $ = \frac{6}{{ab}}\mathop \smallint \limits_{x = 0}^a x\left( {y|_{b{x^2}/{a^2}}^{bx/a}} \right){\rm{d}}x$ $ = \frac{6}{{ab}}\mathop \smallint \limits_{x = 0}^a x\left( {\frac{b}{a}x - \frac{b}{{{a^2}}}{x^2}} \right){\rm{d}}x$ $ = \frac{6}{{{a^2}}}\mathop \smallint \limits_{x = 0}^a \left( {{x^2} - \frac{1}{a}{x^3}} \right){\rm{d}}x$ $ = \frac{6}{{{a^2}}}\left( {\left( {\frac{1}{3}{x^3} - \frac{1}{{4a}}{x^4}} \right)|_0^a} \right) = \frac{6}{{{a^2}}}\left( {\frac{{{a^3}}}{3} - \frac{{{a^3}}}{4}} \right) = \frac{a}{2}$ Evaluate the average of $y$-coordinate: $\bar y = \frac{1}{A}\mathop \smallint \limits_{}^{} \mathop \smallint \limits_{\cal D}^{} y{\rm{d}}A = \frac{6}{{ab}}\mathop \smallint \limits_{x = 0}^a \mathop \smallint \limits_{y = b{x^2}/{a^2}}^{bx/a} y{\rm{d}}y{\rm{d}}x$ $ = \frac{3}{{ab}}\mathop \smallint \limits_{x = 0}^a \left( {{y^2}|_{b{x^2}/{a^2}}^{bx/a}} \right){\rm{d}}x$ $ = \frac{3}{{ab}}\mathop \smallint \limits_{x = 0}^a \left( {\frac{{{b^2}}}{{{a^2}}}{x^2} - \frac{{{b^2}}}{{{a^4}}}{x^4}} \right){\rm{d}}x$ $ = \frac{{3b}}{{{a^3}}}\left( {\left( {\frac{1}{3}{x^3} - \frac{1}{{5{a^2}}}{x^5}} \right)|_0^a} \right) = \frac{{3b}}{{{a^3}}}\left( {\frac{{{a^3}}}{3} - \frac{{{a^3}}}{5}} \right) = \frac{{2b}}{5}$ So, the coordinates of the centroid: $\left( {\bar x,\bar y} \right) = \left( {\frac{a}{2},\frac{{2b}}{5}} \right)$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.