Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 16 - Multiple Integration - 16.5 Applications of Multiple Integrals - Exercises - Page 892: 50

Answer

$P\left( {X + Y \le 2} \right) \simeq 0.074$

Work Step by Step

As in Exercise 49, we have the joint probability density function: $p\left( {x,y} \right) = \left\{ {\begin{array}{*{20}{c}} {\frac{1}{{72}}\left( {2xy + 2x + y} \right)}&{{\rm{if}{\ }}0 \le x \le 4{\ }{\rm{and}{\ }}0 \le y \le 2}\\ 0&{{\rm{otherwise}}} \end{array}} \right.$ The condition $X + Y \le 2$ corresponds to the domain ${\cal D}$ given by: ${\cal D} = \left\{ {\left( {x,y} \right)|0 \le x \le 2,0 \le y \le 2 - x} \right\}$ By definition, the probability that $X$ and $Y$ satisfy the condition: $X + Y \le 2$ is given by $P\left( {X + Y \le 2} \right) = \mathop \smallint \limits_{}^{} \mathop \smallint \limits_{\cal D}^{} p\left( {x,y} \right){\rm{d}}y{\rm{d}}x$ $ = \frac{1}{{72}}\mathop \smallint \limits_{x = 0}^2 \mathop \smallint \limits_{y = 0}^{2 - x} \left( {2xy + 2x + y} \right){\rm{d}}y{\rm{d}}x$ $ = \frac{1}{{72}}\mathop \smallint \limits_{x = 0}^2 \left( {\left( {x{y^2} + 2xy + \frac{1}{2}{y^2}} \right)|_0^{2 - x}} \right){\rm{d}}x$ $ = \frac{1}{{72}}\mathop \smallint \limits_{x = 0}^2 \left( {x{{\left( {2 - x} \right)}^2} + 2x\left( {2 - x} \right) + \frac{1}{2}{{\left( {2 - x} \right)}^2}} \right){\rm{d}}x$ $ = \frac{1}{{72}}\mathop \smallint \limits_{x = 0}^2 \left( {2 - x} \right)\left( {x\left( {2 - x} \right) + 2x + \frac{1}{2}\left( {2 - x} \right)} \right){\rm{d}}x$ $ = \frac{1}{{72}}\mathop \smallint \limits_{x = 0}^2 \left( {2 - x} \right)\left( {2x - {x^2} + 2x + 1 - \frac{1}{2}x} \right){\rm{d}}x$ $ = \frac{1}{{72}}\mathop \smallint \limits_{x = 0}^2 \left( {2 - x} \right)\left( { - {x^2} + \frac{7}{2}x + 1} \right){\rm{d}}x$ $ = \frac{1}{{72}}\mathop \smallint \limits_{x = 0}^2 \left( {{x^3} - \frac{{11}}{2}{x^2} + 6x + 2} \right){\rm{d}}x$ $ = \frac{1}{{72}}\left( {\left( {\frac{1}{4}{x^4} - \frac{{11}}{6}{x^3} + 3{x^2} + 2x} \right)|_0^2} \right)$ $ = \frac{1}{{72}}\left( {4 - \frac{{44}}{3} + 12 + 4} \right) = \frac{2}{{27}} \simeq 0.074$ So, $P\left( {X + Y \le 2} \right) \simeq 0.074$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.