Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 16 - Multiple Integration - 16.5 Applications of Multiple Integrals - Exercises - Page 892: 49

Answer

The probability: $P\left( {0 \le X \le 2;1 \le Y \le 2} \right) \simeq 0.18$

Work Step by Step

We have $p\left( {x,y} \right) = \left\{ {\begin{array}{*{20}{c}} {\frac{1}{{72}}\left( {2xy + 2x + y} \right)}&{{\rm{if}{\ }}0 \le x \le 4{\ }{\rm{and}{\ }}0 \le y \le 2}\\ 0&{{\rm{otherwise}}} \end{array}} \right.$ By definition: $P\left( {0 \le X \le 2;1 \le Y \le 2} \right) = \mathop \smallint \limits_{x = 0}^2 \mathop \smallint \limits_{y = 1}^2 p\left( {x,y} \right){\rm{d}}y{\rm{d}}x$ $ = \frac{1}{{72}}\mathop \smallint \limits_{x = 0}^2 \mathop \smallint \limits_{y = 1}^2 \left( {2xy + 2x + y} \right){\rm{d}}y{\rm{d}}x$ $ = \frac{1}{{72}}\mathop \smallint \limits_{x = 0}^2 \left( {\left( {x{y^2} + 2xy + \frac{1}{2}{y^2}} \right)|_1^2} \right){\rm{d}}x$ $ = \frac{1}{{72}}\mathop \smallint \limits_{x = 0}^2 \left( {4x + 4x + 2 - x - 2x - \frac{1}{2}} \right){\rm{d}}x$ $ = \frac{1}{{72}}\mathop \smallint \limits_{x = 0}^2 \left( {5x + \frac{3}{2}} \right){\rm{d}}x$ $ = \frac{1}{{72}}\left( {\left( {\frac{5}{2}{x^2} + \frac{3}{2}x} \right)|_0^2} \right) = \frac{1}{{72}}\left( {10 + 3} \right) = \frac{{13}}{{72}} \simeq 0.18$ So, the probability: $P\left( {0 \le X \le 2;1 \le Y \le 2} \right) \simeq 0.18$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.