Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 16 - Multiple Integration - 16.5 Applications of Multiple Integrals - Exercises - Page 892: 35

Answer

${I_x} = \frac{{243}}{{20}}$

Work Step by Step

We have the triangular domain ${\cal D}$ bounded by the coordinate axes and the line $y=3-x$, with mass density $\delta \left( {x,y} \right) = y$. From the figure attached, we see that ${\cal D}$ can be considered as a vertically simple region with the description: ${\cal D} = \left\{ {\left( {x,y} \right)|0 \le x \le 3,0 \le y \le 3 - x} \right\}$ Evaluate the moment of inertia relative to the $x$-axis: ${I_x} = \mathop \smallint \limits_{}^{} \mathop \smallint \limits_{\cal D} {y^2}\delta \left( {x,y} \right){\rm{d}}y{\rm{d}}x = \mathop \smallint \limits_{x = 0}^3 \mathop \smallint \limits_{y = 0}^{3 - x} {y^3}{\rm{d}}y{\rm{d}}x$ $ = \frac{1}{4}\mathop \smallint \limits_{x = 0}^3 \left( {{y^4}|_0^{3 - x}} \right){\rm{d}}x$ $ = \frac{1}{4}\mathop \smallint \limits_{x = 0}^3 {\left( {3 - x} \right)^4}{\rm{d}}x$ $ = - \frac{1}{{20}}\left( {{{\left( {3 - x} \right)}^5}|_0^3} \right) = \frac{{243}}{{20}}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.